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Abstract

We present an approach for determining the linear stability of

steady-states of PDEs on massively parallel computers. Linearizing

the transient behavior around a steady-state solution leads to an eigen-

value problem. The eigenvalues with largest real part are calculated

using Arnoldi's iteration driven by a novel implementation of the Cay-

ley transformation. The Cayley transformation requires the solution

of a linear system at each Arnoldi iteration. This is done iteratively so

that the algorithm scales with problem size. A representative model

problem of 3D incompressible ow and heat transfer in a rotating disk

reactor is used to analyze the e�ect of algorithmic parameters on the

performance of the eigenvalue algorithm. Successful calculations of

leading eigenvalues for matrix systems of order up to 4 million were

performed, identifying the critical Grashof number for a Hopf bifur-

cation.

1 Introduction

Computing a numerical solution to the discretized Navier-Stokes equations
for system sizes ofO(104�105) is commonplace. Massively parallel computers
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are demonstrating the ability to simulate three dimensional uid ow where
the systems size is O(106� 107). However, the linear hydrodynamic stability
of ows for these latter systems sizes is typically not computed. A linear
stability analysis capability is an important tool for performing engineering
design using computations.

A standard approach used to determine the dynamical behavior of the
solution is via a numerical time integration of the discretized equations. An-
other approach is to compute steady-state solutions and then to determine its
stability by computing selected eigenvalues of a large-scale generalized eigen-
value problem. This latter approach is the subject of the current study. This
approach has the advantage that a steady-state solution can be eÆciently
located with a robust solver and then can be tracked using continuation
techniques. Each resulting solution can be classi�ed as stable or not. A time
integration approach only determines stable steady-states and is highly de-
pendent on initial conditions. Hence qualitative information describing the
behavior of the Navier-Stokes system upon parameter changes (e.g. Grashof,
Rayleigh and Reynolds numbers) cannot be readily determined. We refer the
reader to the recent studies [1, 2, 3, 4] for further information and citations
to the recent literature. We do note that there are techniques for augment-
ing codes that time integrate to the steady-state [5]. We are unaware of any
studies where augmenting a transient code with these techniques is used to
study the qualitative behavior of complex three-dimensional ow.

Our interest is in characterizing the stability of complex three dimensional
systems with coupled uid ow, heat transfer, and mass transfer. We are in-
terested in the numerical solution of large scale generalized eigenvalue prob-
lems that arise from �nite element methods for the Navier-Stokes equations
when the matrix system size is of n = O(106). The solution of a general-
ized eigenvalue problem with an Arnoldi iteration necessarily involves solving
linear systems, but for the targeted applications sparse direct methods are
not a viable alternative. They possibly require O(n2) operations plus a pro-
hibitive amount of memory and are not scalable to hundreds or thousands of
processors. Instead, this paper considers the use of iterative methods for the
necessary linear solves on massively parallel machines. Along with a scalable
eigensolver, such an approach allows stability analysis to be performed on
large systems arising from 3D models.

We present a large scale eigenvalue algorithm that allows us to determine
the linear stability of a representative problem of 3D incompressible ow
of heat transfer in a rotating disk reactor. While the steady ow for this
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application is axisymmetric and can be computed with a 2D model, the
stability of the ow to 3D disturbances is needed to con�dently use the
results to design reactors. In addition, axisymmetric modes located with the
3D calculation can be veri�ed against the more routine 2D calculations. We
carefully discuss the inuence of the various algorithmic parameters on the
performance of the stability analysis. Successful calculations were performed
on this problem where the order of the matrix eigenvalue problem was up
to 4 million. Our algorithm identi�ed a critical Grashof number for a Hopf
bifurcation, above which the reactor exhibits undesirable ow behavior.

We believe that the contribution of our study is the detailed documen-
tation of the overall integration and solution process that is needed when
sophisticated large-scale linear algebra techniques are used in conjunction
with a fully nonlinear steady-state Naiver-Stokes solver on a massively par-
allel computer. We are unaware of another study similar in scope to ours.
However, more work needs to be accomplished so that large-scale linear sta-
bility analysis becomes an everyday tool of the analyst and design engineer.
We list several outstanding topics for further research at the end of our re-
port.

Our paper is organized as follows. Section 2 discusses model problem
of the incompressible ow and heat transfer in a rotating disk reactor and
section 3 reviews the computation of a steady-state solution. Section 4 for-
mulates the eigenvalue problem used to compute the stability of the steady-
state and describes in detail our numerical scheme for solving the large scale
generalized eigenvalue problem using the Cayley transformation. Section 5
discusses in detail some of the issues related to using an iterative linear solver
on parallel computers as part of the eigenvalue calculation. Section 6 applies
the linear stability analysis capability to determine the critical Grashof num-
ber for a Hopf bifurcation. We summarize our �ndings along with concluding
remarks in section 7.

2 Steady Flow Problem

In this section, we will describe our representative 3D ow and heat transfer
problem. A common approach to investigating the behavior of such a non-
linear model is to track steady-state solutions as they evolve with changes in
system parameters. The fact that computing a solution to the steady-state
equations does not indicate whether the solution is stable or unstable moti-
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Figure 1: Top view and cross section of rotating disk reactor for chemical
vapor deposition reactions. The surface elements shown correspond to a
94656 element mesh of hexahedrons and 500215 unknowns.

vates the development of a linear stability analysis capability for large-scale
ow problems.

The rotating disk reactor (RDR) is a common system for growing high
quality thin �lms via chemical vapor deposition. A top view and cross sec-
tional view of the reactor con�guration are shown in Figure 1. The reactor
consists of an outer cylindrical can and a smaller cylinder can inside, which
is rotating and heated on top. On this heated disk, the deposition occurs
via surface reactions. Plug ow enters the top circular area, passes over the
heated, rotating disk, and through the annular region before leaving the com-
putational domain. Under certain conditions, the ow in the reactor is well
represented by the von Karman similarity solution for ow over an in�nite
rotating disk [6], leading to very desirable growth conditions.

The rotating disk reactor is known from experiments and calculations to
exhibit ow instabilities. This includes the formation of stable yet undesir-
able re-circulation cells [6, 7, 8] as well as unsteady ows [9]. The steady-state
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behavior of this system can be uncovered by bifurcation analysis of steady-
state ows [7, 10]. While these solutions are axisymmetric and require just
2D calculations, the stability analysis must be able to detect instabilities to
non-axisymmetric states and so we have calculated the steady ow using a
full 3D model.

To provide the most general results, we study just the uid ow and heat
transfer model (no mass transfer or reactions) and look at dimensionless
numbers, which are based on the assumptions of constant properties and the
Boussinesq approximation for buoyancy. For the calculations in this paper,
we have �xed the design parameters as shown in the �gure, with L=R = 1:0,
W=R = 1:2, and H=R = 1:0. The operating parameters in the model that
are also �xed for these calculations include the Rotational Reynolds number,
Rerot = (
R2)=� = 83:77 and the Prandlt number Pr = �=� = 1:0 where 

is the rotation rate, � is the kinematic viscosity, and � is the thermal di�u-
sivity. The Reynolds number at the inlet is �xed at the matching condition,
which is the ow rate that would be drawn by an in�nite disk rotating at
Rerot. The asymptotic value for the inlet velocity [9] of V = 0:884

p

� leads

to a inlet Reynolds number of Re = (2RV )=� = 16:18. The �nal parameter
is the Grashof number, measuring the relative strength of buoyancy forces
to viscous forces. This parameter is varied at the end of the paper, but for
most calculations is held constant at Gr = (g�TR3)=�2 = 15000, where g
is the magnitude of gravity, � is the thermal expansion coeÆcient, and T is
the temperature di�erence between the heated disk and the inlet (with the
outer walls also being held at the inlet temperature).

The steady-state Navier-Stokes equations with the Boussinesq approxi-
mation are solved along with the continuity equation for incompressible ows.
In addition, a heat equation with convective and conduction terms is solved.
The equations are shown in Table 1 and include the time dependent terms,
which are important for the formulation of the stability (eigenvalue) calcu-
lation. The discretized system can be expressed in the form f(y; _y; �) = 0

where, y represents the vector of nodal unknows, _y represents the time de-
pendent terms, and � denotes the system parameter of interest which for
the current study is the Grashof number. The next section describes the
computational procedure.
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Table 1: The governing PDE's for incompressible ow with heat transfer are
shown in dimension-less form, including the Navier-Stokes equations with
the Boussinesq approximation, the continuity equation, and a heat balance.

Momentum dv
dt
+ v � rv = �rP +r2v +GrTez

Total Mass r � v = 0

Thermal Energy dT
dt
+ v � rT = 1

Pr
r2T

3 Computational Procedure

A non-trivial amount of computing infrastructure is needed before a linear
stability analysis on a massively parallel machine can be undertaken. This
section serves as an introduction/review of this infrastructure along with a
brief discussion on the software tools used. We refer the reader to [11] for
a recent paper describing the CFD simulator employed. This procedure can
be summarized in these 3 steps, with details to follow.

1. The �nite element mesh is generated and a graph partitioning tool is
employed to distribute the mesh among the processors.

2. A parallel �nite element CFD simulator is used to compute a steady-
state solution.

3. A parallel eigen-solver determines the linear stability from a lineariza-
tion of a steady-state solution.

The CUBIT [12] mesh generation environment produces a three-dimensional
unstructured �nite element mesh of the domain into hexahedral elements.
The mesh is partitioned among the processors with the Chaco graph parti-
tioning tool [13], using a multi-level method and Kernihan-Lin re�nement.
Chaco partitions the mesh into sub-domains of equal numbers of mesh nodes
and determines their assignments to the processors.

The parallel �nite element based CFD simulator we used is MPSalsa. Us-
ing the distributed unstructured mesh produced by CUBIT and Chaco, MP-
Salsa computes the steady-state solution to the Navier-Stokes equations. The
discretization used by MPSalsa is a variant of the Galerkin/Least-Squares
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method [14] (GLS). This formulation includes a pressure stabilization term
so that the velocity components, temperature, and pressure �elds can all
be represented with the same trilinear basis functions. The non-linear set of
equations are solved using a fully coupled Newton's method [15] with an ana-
lytically calculated Jacobian matrix. This solution procedure, while memory
intensive, leads to robust convergence to steady-state solutions. MPSalsa has
been successfully used to analyze ows and deposition pro�les in chemical
vapor deposition reactors [16, 17].

The parallel implementation [18] of the ARPACK [19] eigen-solver library
numerically solves the sparse generalized non-symmetric eigenvalue problem
that results from a linearization of a steady-state solution computed by MP-
Salsa. Section 4 presents further details.

The Aztec [20] distributed memory parallel iterative library is used by
both MPSalsa during the non-linear solve and parallel ARPACK. Aztec im-
plements the standard Krylov techniques (GMRES, TFQMR and BICSTAB)
and preconditioners including additive Schwarz domain preconditioners. A
key aspect of Aztec is that given the partition of the domain among the
processors produced by Chaco, the necessary parallel matrix-vector products
are generated thus relieving the user of these tedious computations.

We now discuss some of the speci�c details associated with the represen-
tative steady-ow problem discussed previously.

2.
The mesh was partitioned into the same number of sub-domains as the

number of processors for the run, which was 250 for most of the calculations
described below. The calculations were performed on the Sandia-Intel Tops
Computer [21].

The computational domain is discretized using a mesh of 94656 hexahe-
dral elements, which corresponds to 100043 nodes. The circular area is paved
with an unstructured mesh, as can be seen from a top view in Figure 1(a),
while the axial direction is structured, as seen in the cross-sectional view in
Figure 1(b).

This discretization leads to a system of 500215 unknowns. Within each it-
eration of Newton's method, the �nite element residuals and Jacobian matrix
are assembled in 2:0 seconds when run on 250 processors. The linear solve
is performed with the Aztec package [20] using a GMRES iteration without
restarts. The matrix is �rst scaled to unit row sum, and on each sub-domain
(with one subdomain per processor) an ILU preconditioner is used with a �ll-
in factor of 7. The �ll-in factor is a parameter that allows the preconditioner
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Figure 2: Visualization of the three-dimensional steady-state ow solution.
Streamlines enter the top, pass over the heated disk, and leave through the
annular region.

to retain more non-zeros than the sparse Jacobian; in this case the incom-
plete LU factorization process can create up to 7 times as many. An average
GMRES solve required 80 iterations and 30 seconds (including the time to
construct the preconditioner) to reach a drop in the scaled residual of 10�3.
The steady-state solution at Gr = 15000 was reached from a trivial initial
guess in 7 minutes using 2 consecutive steady-state solves for increasing Gr.

A visualization of the steady-state ow is shown in Figure 2. Several
streamlines are shown entering the top of the reactor, spiraling over the
disk, and exiting through the annular region. This calculation does not
give any information on the stability of the steady-state solution to small
perturbations.

For the remainder the article, excluding the mesh convergence study in
section 5.3, all numerical experiments on linear stability analysis algorithms
are about the steady-state calculation described in this section.
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4 Stability Analysis Calculation

If we linearize the equation

f(y; _y; �) = 0

about the steady-state (y0; �0) to small perturbations e�tz, we obtain the
generalized eigenvalue problem Jz = �Bz where the Jacobian and mass
matrices are J = fy(y0; 0; �0) and B = �f _y(y0; 0; �0) respectively. We denote
the order of the matrices J and B by n. Because we use a GLS discretization
scheme, the generalized eigenvalue problem can be written as

 
L �C

CT +G K

!"
u

p

#
=

 
M 0

N 0

!"
u

p

#
� (1)

where u is the vector of uid velocity components and temperature un-
knowns, p is the pressure, M is the symmetric positive de�nite matrix of
the overlaps of the �nite element basis functions, N is an up-winded mass
matrix, L is the sum of the discretized di�usion, nonlinear convection and
any possible reaction operators, C is the discrete gradient, CT is the discrete
divergence operator, and G and K (pressure Laplacian) are stabilization
terms arising from the GLS.

The steady-state is stable if Real(�) < 0 for all the eigenvalues of (1).
Hence, computing approximations to the right-most eigenvalues determines
the stability of the steady-state.

4.1 Formulation of the Eigenvalue Problem

To compute the right-most eigenvalues, a shift-invert spectral transforma-
tion [22] is typically used to transform (1) into the standard eigenvalue prob-
lem

Tsz = (J� �B)�1Bz = z;  =
1

�� �
: (2)

The above formulation maps the in�nite eigenvalues of (1) (arising from
singular B) to zero. By selecting the pole � near the imaginary axis, the
right-most eigenvalues are mapped by Ts into those of largest magnitude.
However, because J andB are real matrices, we only allow a real � to keep the
computation in real arithmetic. Although a natural choice is to select a zero
pole, the resulting transformation might miss a Hopf bifurcation (complex
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conjugate pair of eigenvalues that cross into the right half of the complex
plane). This occurs, for instance, when the distance to the Hopf bifurcation
is greater than the distance to other (perhaps stable) eigenvalues of (1). The
paper [23] discusses these issues in some detail.

The computational burden is in solving the linear set of equations with
coeÆcient matrix (J � �B)�1B. Although this transformation maps the
eigenvalues near the pole to those of largest magnitude, the transformation
also maps the eigenvalues far from the pole to zero. Hence, the spectral con-
dition number (the ratio of the largest to smallest, in magnitude, eigenvalues)
of Ts can be quite large. The resulting linear systems will be diÆcult to solve
because the rate of convergence of a Krylov based iterative method [24, 25]
depends strongly upon the spectral condition number.

A better conditioned linear set of equations is achieved when using a
generalized Cayley [22] transformation

Tcz = (J� �B)�1(J� �B)z = z;  =
�� �

�� �
: (3)

We call � the zero of the Cayley transform. In contrast to shift-invert trans-
form, the Cayley transform maps any eigenvalues of (1) far from the pole
close to one. If we are able to select a pole � that is to the right of all the
eigenvalues (1) and choose � > �, then the smallest eigenvalue of Tc is no
smaller than one (in magnitude). Moreover, by judiciously choosing the pole,
we can approximately bound the largest eigenvalue of Tc (in magnitude) re-
sulting in a small (say order ten) spectral condition number.

The last two paragraphs describe a delicate balancing act. On the one
hand, the ability to compute the right-most eigenvalues (�'s) requires that
the Cayley transformation map these values to 's that are the largest (in
magnitude). Such a situation allows the eigensolver to perform well. On the
other hand, the iterative solver used to solve the linear systems arising from
the Cayley transformation is negatively impacted if the ratio of max(jj) to
min(jj) (the spectral condition number of Tc) is large.

We remark that although the Cayley and shift-invert spectral transfor-
mation both involve (J � �B)�1, the system of linear equations solved by
each transformation is distinct. Given a vector x, the Cayley system requires
the solution of

(J� �B)v = (J� �B)x (4)

so that v = Tcx. Instead, the shift-invert system solves (J � �B)v = Bx.
That the spectral condition number of the Cayley system can be tightly
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Start P ARPACK with the vector v = J�1Bx where x is random vector.
Select a pole � and zero � for Tc.

1. Compute m iterations of Arnoldi's method with Tc using the
starting vector v: Compute m eigenvalues (the �'s approximat-
ing the 's) of the order m upper Hessenberg matrix constructed
by P ARPACK.

2. Map the �'s to �̂'s (approximations to the �'s) via the inverse
Cayley transformation.

3. Exit if the k rightmost �̂'s satisfy the user speci�ed tolerance.

4. Implicitly restart Arnoldi's method resulting in an updated start-
ing vector v.

5. Update � and � using the current approximate eigenvalues.

Figure 3: Computing the leading eigenvalues of Jz =Mz� using the Cayley
transformation and IRAM.

bounded (via a careful choice of � and �) implies that the Cayley system
results in a better conditioned set of linear equations.

4.2 Solution of the Eigenvalue Problem

We employ an implicitly restarted Arnoldi method (IRAM) as implemented
in the parallel implementation [18] of the ARPACK [19] to compute eigenval-
ues and eigenvectors of the generalized eigenvalue problem. We have slightly
modi�ed the P ARPACK subroutines pdnaupd and pdneupd to implement
the Cayley transformation. We refer the reader to [19] for full details about
the software and underlying algorithm.

Figure 3 lists the scheme used for computing several (say k) right-most
eigenvalues of (1). A few remarks are in order. The starting vector is chosen
so that it does not contain any components [26] in the null-space of B. For
all the eigenvalue problems solved, the value of m = 24 was used. At step
2, the eigenvalues (�'s approximating 's) of the m by m Hessenberg matrix
are mapped back to the system de�ned by (1) via the inverse Cayley trans-
formation resulting in approximations �̂'s. The eigensolver is terminated
when these k rightmost approximate eigenvalues satisfy the user speci�ed
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tolerance. The check that must be satis�ed is kJẑ� �̂Bẑk=kBẑk where ẑ is
the associated approximate eigenvector. By implicitly restarting the Arnoldi
iteration, we compute a new starting vector for the subsequent run (step 1).
Implicitly restarting is an eÆcient and stable manner to restart Arnoldi's
method so that storage requirements remain �xed for the computation. Fi-
nally, at step 5, the new pole and zero for the next Cayley transformation
are updated so that the spectral condition number of Tc is of order ten.

We remark that there are two iterations|an outer and an inner iteration.
The outer iteration is Step 1 of the algorithm listed in Figure 3. During each
of these outer iterations, there is an inner iteration used to solve the linear
set of equations (4) arising from applying Tc. We use a GMRES iteration for
solving this linear set of equations. The next section discuss details associated
with the inner iteration.

The two parameters � and � in the Cayley transformation give a con-
siderable amount of exibility over what eigenvalues will be located by the
Arnoldi's method, how accurately they will be calculated, and how expen-
sive the calculation will be. The major consideration is the size of jj for
the eigenvalues � of interest. Eigenvalues � that are mapped to large jj
will emerge and quickly be approximated by Arnoldi's method. We present
results that quantify the various trade-o�s in picking these parameters while
preserving the spectral condition number of Tc.

A good choice for these parameters is for the right-most eigenvalues of
interest, �i for i = 1 : k, to have real parts that satisfy 2� � � < Real(�i) <
� < �. This implies that these �i are mapped so that j(�i)j � 2 as long as
jImag(�i)j is not large compared to � � Real(�i).

To illustrate how the Cayley transformation maps eigenvalues of the sys-
tem, we plot the magnitude of Cayley transformation in Figure 4. This �gure
shows how � is mapped to jj for �xed values of � = 20 and � = 80 and
four imaginary portions of �. Note that as the real part of � decreases, jj
approaches one. The � and � values in this plot map the real eigenvalues in
the range of �40 < Real(�) < 20 to magnitudes in the Cayley transformed
system of jj > 2, which is suÆciently well separated from the many eigen-
values near jj = 1 for the eigensolver. For any real eigenvalues satisfying
Real(�) < �40, the Cayley transformation maps these eigenvalues so that
1 < j(�)j < 2: Hence, Arnoldi's method will provide the best approxima-
tions to the eigenvalues satisfying 2� � � < Real(�i) < �.

Figure 4 also indicates that eigenvalues with large imaginary parts are
mapped to small jj. Therefore it is diÆcult to compute approximations to

12



Figure 4: Plot of the transformation of the eigenvalues in the physical system
to those in the Cayley transformed system. The magnitude of the trans-
formed eigenvalue is plotted against the real part of � for three di�erent
imaginary contributions to �.

eigenvalues with large imaginary parts. For instance an eigenvalue at 0� 50{
might not be located if there are many eigenvalues with large jj, such as
near �5 � 0{. This problem is resolved by moving the � parameter to the
right and increasing the Arnoldi space m needed by P ARPACK.

An appropriate choice of �, �, and the size of the Arnoldi space m is
therefore a tradeo� between two factors: selecting m large enough so that
the right-most eigenvalues � are reliably computed by the eigensolver and
avoiding large values of jj so that the resulting linear systems can be eÆ-
ciently solved with preconditioned iterative methods.

5 Preconditioned Iterative Linear Solves

The computationally intensive part of the eigenvalue calculation is the lin-
ear solve with Tc (inner iteration) that occurs during each outer iteration of
Arnoldi's method. Since we are targeting very large problems and algorithms
that scale to thousands of processors, we are limited to preconditioned iter-
ative linear solves of distributed matrices. In this section we �rst discuss the
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tolerances used for the linear solver and eigensolver, the details associated
with our use of Aztec [20] and the outcome of a mesh resolution study.

5.1 Error Tolerances

Figure 5 plots the residuals associated with three right-most eigenvalues and
eigenvectors versus the convergence tolerance used for the linear solver. The
eigensolver residual error is de�ned as

kJẑ� �̂Bẑk
kBẑk (5)

where �̂ and ẑ are the computed eigenvalue and eigenvector approximations.
The residual contains the normalization with Bẑ because P ARPACK nor-
malizes kẑk = 1 and so (5) is independent of the scaling of the data. The
linear solver uses the criterion

kb�Axjk
kBvk < � (6)

whereA = J��B and b = (J��B)v from (4), and � is a tolerance parameter
that must be chosen. Here, v is the distributed unit vector provided by
P ARPACK that is to be transformed via Tc during the i-th (1 � i � m)
outer iteration and xj is the approximate solution after j GMRES iterations
(the inner iteration).

In the experiment shown in Figure 5 we show the inuence of � on the
eigensolver residual error (5). The residual error of the rightmost eigenvalue
pair (denoted by the solid line) stops decreasing � � 10�3. The residual
error of the next two eigenvalues stop decreasing when � � 10�6. Driving
the residual errors lower would require a larger Arnoldi space m or a di�erent
choices of � and �. For the rest of the calculations in this section the linear
solver tolerance was �xed at � = 10�3.

A series of calculations are presented in Figure 6 to illustrate the tradeo�s
in choosing �. The right-most eigenvalue of the steady-state calculation has
real part equal to 0:3 and we set � = 80. As � is increased from 1 to 70,
the maximum jj decreases (recall that max(jj) is approximately equal to
the spectral condition number of Tc). This decrease is seen to correspond
directly to the decrease in the CPU time and memory requirements for the
linear solve, as measured by solution time and the average number of GMRES
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Figure 5: The error in the eigenvalue calculation for the three rightmost
eigenvalues is shown to be a function of the acceptance criterion of the iter-
ative linear solver. The eigensolver residual error and linear solver tolerance
is given in (5) and (6).
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iterations needed for a solve. However, as � is increased so do the residuals
(5). For this problem, a choice of � = 20 provides a balance between eÆ-
ciency and accuracy. The trends seen as a function of � point to a remedy
for systems where the preconditioned linear solver is not able to reach the
speci�ed tolerance: increase � and � until the linear problem can be solved
and then increase the number of outer iterations needed by the eigensolver
(and therefore the number of linear solves required) until (5) is suÆciently
small for the rightmost eigenvalues.

5.2 Using Aztec

Another issue associated with preconditioned iterative solvers is the robust-
ness of the algorithm in reaching a speci�ed tolerance. This includes the
access to, and selection of, an appropriate preconditioner and solution algo-
rithm. For the calculations in this paper, the Aztec linear solver library was
used. An ILUT preconditioner with considerable �ll-in was selected so that
the preconditioner required almost 4 times more memory than the matrix
itself. The preconditioner is computed once and reused for each iteration of
Arnoldi's method needed by the eigensolver.

Since Figure 6(d) shows that a few hundred GMRES iterations are pos-
sibly needed during each outer iteration, the numerical stability of the GM-
RES implementation becomes critical. Originally, a classical Gram-Schmidt
scheme was used for the orthogonalization, but the lack of numerical stabil-
ity prevented the GMRES algorithm from reaching the required tolerance.
Two alternative orthogonalization schemes were used successfully: two-step
classical Gram-Schmidt (CGS) and a modi�ed Gram-Schmidt (MGS). The
CGS method uses two steps of orthogonalization (the second step is the cor-
rection for the possible loss of orthogonality of the Arnoldi basis vectors)
but the number of global communication points remains �xed (at two) in-
dependent of the GMRES iteration. On the other hand, the MGS scheme
requires i communications to orthogonalize i vectors (at GMRES iteration
i) but no additional oating point operations (ops). Both schemes reached
the speci�ed tolerance and provided identical results in terms of the number
of GMRES iterations needed.

There was a signi�cant di�erence in the scalability of the two algorithms
as the number of processors was changed. The time required to perform a
single linear solve (using a pre-calculated preconditioner) was recorded with
the number of processors being varied from 100 to 1000. The message of this
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Figure 6: The model eigenvalue calculation is repeated for several values of
the � parameter in the Cayley transformation. The e�ect of � on (a) the
magnitude of the three largest complex � pairs, (b) the residual errors (5)
associated with the three largest complex � pairs in the transformed system,
(c) the time for the calculation, and (d) the average number of GMRES
iterations needed for each of the 24 linear solve are shown.
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Figure 7: The parallel eÆciency of two stable orthogonalization schemes in
the GMRES algorithm is compared. The extra communications of the Modi-
�ed Gram-Schmidt (MGS) approach scale poorly with number of processors,
while the extra operations of the 2-step Classical Gram-Schmidt (CGS) ap-
proach scale well.

calculation is clear when presenting the total CPU time (calculated as the
wall clock time multiplied by the number of processors) as shown in Figure
7. When the problem was run on 100 processors, the extra communications
required by MGS were slightly less expensive than the extra ops required
by the CGS algorithm. However, as the number of processors is increased, it
is seen that the communication time in MGS starts to dominate, while the
total CGS time remains relatively at. At 1000 processors, the CGS routine
requires only about a quarter of the time of the MGS method.

The results in Figure 7 show that the two-step classical Gram-Schmidt
(CGS) scheme scales much better than the modi�ed Gram-Schmidt (MGS)
scheme. It should be pointed out that the inter-processor communication
rate of the Sandia-Intel Top computer is very fast compared to more loosely
coupled parallel machines, where we would expect the di�erence to be more
dramatic and the cross-over point (at around 175 processors for this case) to
occur at fewer processors.
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Table 2: Mesh resolution studies at Gr = 15000 on the six eigenvalues with
largest real parts. The coarse mesh results would indicate a stable solution,
but the �nest mesh shows that two pairs of eigenvalues have positive real
parts.

Number of Unknowns First Eigenvalue Second Eigenvalue Third Eigenvalue

.25 Million �0:08� 25:33{ �0:49� 9:63{ �1:44� 5:96{

.50 Million 0:35� 25:16{ �0:05� 9:50{ �1:13� 5:91{
1 Million 0:57� 25:06{ 0:21� 9:36{ �0:98� 6:01{
2 Million 0:73� 25:02{ 0:39� 9:31{ �0:85� 6:03{
4 Million 0:84� 24:94{ 0:50� 9:22{ �0:78� 6:08{
2D mesh 1:06� 24:69{
.50 Million

5.3 Mesh Resolution

All the calculations previously discussed were carried out for a single �nite
element mesh corresponding to just over a half million unknowns (see sec-
tion 2). While we have shown above that the eigenvalues are accurate for
this given discretized system, a mesh resolution study veri�es that these
eigenvalues are good approximations to those of the continuous PDE model.
The results of such a study are shown in Table 2. The six eigenvalues with
largest real parts at Gr = 15000 are shown for �ve successively �ner meshes,
each approximately doubling the number of unknowns of the previous. They
range from 250 thousand to 4 million unknowns. Since the �rst eigenmode
was determined through visualization to be axisymmetric, a �nal calculation
on a very �ne 2D axisymmetric mesh of 0:5 million unknowns was used to
verify this calculation.

The parameter value was chosen to be near a Hopf bifurcation. What
we �nd is that while the coarsest mesh indicates a stable steady-state, the
second coarsest mesh (which is used in all other computations in this paper)
shows one unstable eigenpair, and the three �nest meshes predict that two
eigenvalues are unstable. Only a narrow range of parameter values would see
this behavior, where a di�erent meshes give di�erent stability predictions.
While the change in the eigenvalues with successive re�nement is slowing,
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the values are still changing even when the number of unknowns increases
from 2 to 4 million unknowns.

There was no attempt to calculate a convergence rate with mesh since
the data does not fall on smooth a curve. This is explained by several rea-
sons. First, the mesh re�nement of the unstructured mesh was not precisely
uniform, but was done "by-hand" in an attempt to re�ne in all directions
equally. The accuracy of the nonlinear steady-state calculation and of the
linear solves within the eigensolver, both of which are iterative procedures
subject to a stopping tolerance, are additional sources of error that inuence
the calculated eigenvalues. These results imply that very �ne meshes and
very accurate linear and nonlinear solves may be needed to pinpoint the ex-
act parameter value of a Hopf bifurcation in 3D problems. However, the fact
that the coarsest mesh is converging to the same physical modes as the �nest
meshes implies that the system's behavior can be quickly explored with a
relatively coarse mesh, and the �ner meshes are only needed to locate the
parameter values to a higher degree of accuracy.

Some more details on the 4 million unknown calculation follow. For this
�nest mesh, the steady-state solution was reached from a trivial guess in
three continuation steps in the Gr number, using 2.5 hours of CPU time on
1024 processors. The leading eigenvalues of the sparse matrix with over 500
million nonzero elements where calculated in under 5 hours, where each linear
solve required about 12 minutes. The linear solves used row-sum scaling, the
ILUT preconditioner with a �ll-in factor of 8, and required an average of 825
iterations of (un-restarted) GMRES to converge.

We end this section by cautioning the reader that although we have gone
to many lengths to determine the right-most eigenvalue, we cannot guaran-
tee that this eigenvalue has been calculated. At the moment, there are is no
theory available that enables a check as to whether the right-most eigenvalue
has truly been calculated. This is in contrast to the large-scale symmet-
ric eigenvalue problem [27] where at the cost of computing a sparse direct
factorization, reliability of the eigen-solver can be determined.

6 Reactor Analysis

In this section we apply the linear stability analysis capability that has
been presented above. Experiments have shown that the desirable non-
recirculating ow in the rotating disk reactor can go unstable to periodic
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oscillations [9]. It is important during reactor design to be able to locate
this instability. With that goal in mind, the steady-state solution branch
was tracked using �rst-order continuation and the leading eigenvalues were
calculated at each step. The calculations were performed on the standard
mesh corresponding to half a million unknowns.

Figure 8 shows how the six eigenvalues that have largest real part at
Gr = 15000 evolve from Gr = 10000 to Gr = 16000. By interpolating
between the symbols to where the curves cross the imaginary axis, the �rst
Hopf bifurcation is seen to occur near 14800, the second just above 15000
and a third near 15500. By including the trends seen in the mesh resolution
study in Table 2, where the systems became less stable with more re�ned
meshes, we can extrapolate that with a �ner mesh the �rst Hopf bifurcation
would fall in the range Gr = 14000� 14500.

The eigenvectors associated with these largest eigenvalues are the pertur-
bations that will not get damped out if the parameter value puts the system
past the Hopf bifurcation. Visualization of the eigenvectors gives informa-
tion that can be used to suggest modi�cations to the design or operation
of the reactor to delay the onset of these unwanted instabilities. Since the
instabilities involve oscillations between the real and imaginary parts of the
eigenvector, each of which corresponds to a three-dimensional ow �eld, it
was not possible to produce satisfactory still pictures for this publication.
What the visualization found was that the �rst Hopf bifurcation is an ax-
isymmetric state with a toroidal roll cell. The oscillation is the roll cell being
forced out by a counter-rotating roll cell. The second Hopf bifurcation breaks
symmetry with a mode 1 instability, with a single large roll cell over the disk
that rotates in time. The third Hopf bifurcation is a mode 2 symmetry break-
ing, where there is up-ow in two quadrants of the disk and down-ow in
the two others. Again, this ow structure precesses around reactor in time.
It is interesting that the modes 0, 1, and 2 symmetry breakings occur at
nearly the same conditions. While the problem could have been solved us-
ing a two-dimensional model with an axisymmetric formulation and complex
arithmetic for the non-axisymmetric modes, the methods were developed as
a general 3D capability. And since Cartesian coordinates were used to model
the system, the fact that the solution was axisymmetric did not simplify the
calculations in any way.
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Figure 8: The tracking of the six largest eigenvalues as a function of param-
eter indicate a Hopf bifurcation near 14800.
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7 Summary and Conclusions

A massively parallel code for calculating steady-states of incompressible and
reacting ows (MPSalsa) has been linked to a library (using P ARPACK) for
calculating selected eigenvalues for the purpose of linear stability analysis.
A novel implementation of the Cayley transform has been presented and
analyzed for an example of 3D ow and heat transfer in a rotating disk
CVD reactor. This implementation allows control over the spectral condition
number of the linear system that must be solved during each step Arnoldi's
iteration used by P ARPACK making it particularly well suited for use with
scalable iterative linear solvers.

By using sophisticated linear algebra algorithms and software for iterative
solutions of large, sparse, distributed matrices, we were able to calculate sev-
eral right-most eigenvalues for linearized systems corresponding to 4 million
unknowns and 530 million nonzero matrix entries on 1024 parallel processors.

The stability of the ow in the rotating disk reactor was analyzed as a
function of the Grashof number, Gr. The desirable ow �eld was found to go
unstable in the range of Gr = 14000� 14500 after extrapolating the results
to �ner meshes. While for this reactor con�guration the ow goes unstable
to an axisymmetric mode, there are mode 1 and mode 2 instabilities that go
unstable at slightly higher values of Gr.

We have shown that determining the linear stability of steady-state so-
lutions arising from the discretization of 3D incompressible ow PDE's is
possible. We have also demonstrated the potential impact by locating a ow
instability in an engineering system that can be used to interpret certain
experimental results and guide the design of the next generation reactors.

As mentioned at the end of the introduction, several outstanding issues
need to be addressed so that large-scale linear stability analysis is employed
on a regular basis by the analyst and design engineer. These include an
improved understanding of the role of the error made in approximating the
steady-state upon the linear stability analysis; improved preconditioners to
reduce the cost of the inner iteration during the eigen-solve; and the ability
to rigorously verify that the right-most eigenvalue has been computed.
Acknowledgements We would like to thank Beth Burroughs, David Day,
Louis Romero, John Shadid and Ray Tuminaro for helpful discussions.
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